The British Journal of Translational Global Health

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Related articles

VOLUME 1 , ISSUE 1 ( January-April, 2024 ) > List of Articles

REVIEW ARTICLE

Challenges of Salivary Metabolomics for Diagnosis of Metabolic Diseases

Masahiro Sugimoto, Shigeo Ishikawa, Chitta R Chowdhury

Keywords : Biomarker, Cancer, Metabolism, Metabolomics, Saliva

Citation Information : Sugimoto M, Ishikawa S, Chowdhury CR. Challenges of Salivary Metabolomics for Diagnosis of Metabolic Diseases. 2024; 1 (1):15-21.

DOI: 10.5005/bjotgh-11016-0001

License: CC BY-NC 4.0

Published Online: 30-04-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Saliva, a non-invasively and safely available biofluid, has been suited for diverse diagnostic tests. Recent investigations have explored its utility in assessing both oral conditions and systemic diseases. Metabolomics technologies enable simultaneous analysis of numerous metabolites and identify novel biomarkers to diagnose and predict therapeutic outcomes. Research on metabolomics-based salivary tests has been accumulated for disorders with metabolic dysregulation, such as periodontal disease and oral cancers. Clinical studies are also performed to develop and validate diagnostic markers of systematic cancers occurring in the organs far from the oral cavity. However, several challenges still exist in applying biomarkers in clinical settings. Establishing standardisation of processes, including saliva collection, storage, measurement, and data analysis, is imperative. Elucidating the rational mechanisms of molecular markers in saliva is essential. Here, we review the biological and technical aspects of the recent salivary tests.


PDF Share
  1. Musalem-Dominguez O, Montiel-Company JM, Ausina-Márquez V, et al. Salivary metabolomic profile associated with cariogenic risk in children. J Dent 2023;136:104645. DOI: 10.1016/j.jdent.2023. 104645.
  2. Kim S, Kim HJ, Song Y, et al. Metabolic phenotyping of saliva to identify possible biomarkers of periodontitis using proton nuclear magnetic resonance. J Clin Periodontol 2021;48(9):1240–1249. DOI: 10.1111/jcpe.13516.
  3. Alt-Holland A, Huang X, Mendez T, et al. Identification of salivary metabolic signatures associated with primary sjögren's disease. Molecules 2023;28(15):5891. DOI: 10.3390/molecules28155891.
  4. Setti G, Righi V, Mucci A, et al. Metabolic profile of whole unstimulated saliva in patients with sjögren's syndrome. Metabolites 2023;13(3):348. DOI: 10.3390/metabo13030348.
  5. Lalue Sanches M, Sforça ML, Guimarães Lo Turco E, et al.1H-NMR-based salivary metabolomics from females with temporomandibular disorders – A pilot study. Clin Chim Acta 2020;510:625–632. DOI: 10.1016/j.cca.2020.08.006.
  6. Foratori-Junior GA, Le Guennec A, Fidalgo T, et al. Comparison of the metabolic profile between unstimulated and stimulated saliva samples from pregnant women with/without obesity and periodontitis. J Pers Med 2023;13(7):1123. DOI: https://doi.org/10.3390/jpm13071123.
  7. da Silva Fidalgo TK, Freitas-Fernandes LB, Marques BBF, et al. Salivary metabolomic analysis reveals amino acid metabolism shift in sars-cov-2 virus activity and post-infection condition. Metabolites 2023;13(2):263. DOI: 10.3390/metabo13020263.
  8. Costa Dos Santos Junior G, Pereira CM, Kelly da Silva Fidalgo T, et al. Saliva NMR-based metabolomics in the war against covid-19. Anal Chem 2020;92(24):15688–15692. DOI: 10.1021/acs.analchem.0c04679.
  9. Baima G, Iaderosa G, Citterio F, et al. Salivary metabolomics for the diagnosis of periodontal diseases: A systematic review with methodological quality assessment. Metabolomics 2021;17(1):1. DOI: 10.1007/s11306-020-01754-3.
  10. Barnes VM, Teles R, Trivedi HM, et al. Acceleration of purine degradation by periodontal diseases. J Dent Res 2009;88(9):851–855. DOI: 10.1177/0022034509341967.
  11. Barnes VM, Ciancio SG, Shibly O, et al. Metabolomics reveals elevated macromolecular degradation in periodontal disease. J Dent Res 2011;90(11):1293–1297. DOI: 10.1177/0022034511416240.
  12. Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023;30:61. DOI: 10.1186/s12929-023-00956-w.
  13. Fasoulakis Z, Koutras A, Ntounis T, et al. Ovarian cancer and glutamine metabolism. Int J Mol Sci 2023;24(5):5041. DOI: 10.3390/ijms24055041.
  14. Nava GM, Madrigal Perez LA. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer. Expert Rev Mol Diagn 2022;22(4):439–447. DOI: 10.1080/14737159.2022.2065196.
  15. Walsh T, Macey R, Kerr AR, et al. Diagnostic tests for oral cancer and potentially malignant disorders in patients presenting with clinically evident lesions. Cochrane Database Syst Rev 2021;7(7):CD010276. DOI: 10.1002/14651858.CD010276.pub3.
  16. Warnakulasuriya S. Oral potentially malignant disorders: A comprehensive review on clinical aspects and management. Oral Oncol 2020;102:104550. DOI: 10.1016/j.oraloncology.2019.104550.
  17. Aguirre-Urizar JM, Lafuente-Ibanez de Mendoza I, Warnakulasuriya S. Malignant transformation of oral leukoplakia: Systematic review and meta-analysis of the last 5 years. Oral Dis 2021;27(8):1881–1895. DOI: 10.1111/odi.13810.
  18. Idrees M, Kujan O, Shearston K, et al. Oral lichen planus has a very low malignant transformation rate: A systematic review and meta-analysis using strict diagnostic and inclusion criteria. J Oral Pathol Med 2021;50(3):287–298. DOI: 10.1111/jop.12996.
  19. Lorenzo-Pouso AI, Lafuente-Ibanez de Mendoza I, Perez-Sayans M, et al. Critical update, systematic review, and meta-analysis of oral erythroplakia as an oral potentially malignant disorder. J Oral Pathol Med 2022;51(7):585–593. DOI: 10.1111/jop.13304.
  20. Ishikawa S, Sugimoto M, Edamatsu K, et al. Discrimination of oral squamous cell carcinoma from oral lichen planus by salivary metabolomics. Oral Dis 2020;26(1):35–42. DOI: 10.1111/odi.13209.
  21. Kaur J, Jacobs R, Huang Y, et al. Salivary biomarkers for oral cancer and pre-cancer screening: A review. Clinical oral investigations 2018;22(2):633–640. DOI: 10.1007/s00784-018-2337-x.
  22. Khurshid Z, Zafar MS, Khan RS, et al. Role of salivary biomarkers in oral cancer detection. Adv Clin Chem 2018;86:23–70. DOI: 10.1016/bs.acc.2018.05.002.
  23. Mikkonen JJ, Singh SP, Herrala M, et al. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J Periodontal Res 2016;51(4):431–437. DOI: 10.1111/jre.12327.
  24. Tantray S, Sharma S, Prabhat K, et al. Salivary metabolite signatures of oral cancer and leukoplakia through gas chromatography-mass spectrometry. J Oral Maxillofac Pathol 2022;26(1):31–37. DOI: 10.4103/jomfp.jomfp_335_21.
  25. Wei J, Xie G, Zhou Z, et al. Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer 2011;129(9):2207–2217. DOI: 10.1002/ijc.25881.
  26. Ishikawa S, Sugimoto M, Konta T, et al. Salivary metabolomics for prognosis of oral squamous cell carcinoma. Front Oncol 2021;11:789248. DOI: 10.3389/fonc.2021.789248.
  27. Panneerselvam K, Ishikawa S, Krishnan R, et al. Salivary metabolomics for oral cancer detection: A narrative review. Metabolites 2022;12(5):436. DOI: 10.3390/metabo12050436.
  28. Ishikawa S, Sugimoto M, Kitabatake K, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 2016;6:31520. DOI: 10.1038/srep31520.
  29. Bel'skaya LV, Sarf EA, Solomatin DV, et al. Metabolic features of saliva in breast cancer patients. Metabolites 2022;12(2):166. DOI: 10.3390/metabo12020166.
  30. Bel'skaya LV, Sarf EA. Prognostic value of salivary biochemical indicators in primary resectable breast cancer. Metabolites 2022;12(6):552. DOI: 10.3390/metabo12060552.
  31. Bel'skaya LV, Sarf EA, Loginova AI. Diagnostic value of salivary amino acid levels in cancer. Metabolites 2023;13(8):950. DOI: 10.3390/metabo13080950.
  32. Umemori Y, Ohe Y, Kuribayashi K, et al. Evaluating the utility of n1,n12-diacetylspermine and n1,n8-diacetylspermidine in urine as tumor markers for breast and colorectal cancers. Clin Chim Acta 2010;411(23–24):1894–1899. DOI: 10.1016/j.cca.2010.07.018.
  33. Takayama T, Tsutsui H, Shimizu I, et al. Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clin Chim Acta 2016;452:18–26. DOI: 10.1016/j.cca.2015.10.032.
  34. Tsutsui H, Mochizuki T, Inoue K, et al. High-throughput lc-ms/ms based simultaneous determination of polyamines including n-acetylated forms in human saliva and the diagnostic approach to breast cancer patients. Anal Chem 2013;85(24):11835–11842. DOI: 10.1021/ac402526c.
  35. Murata T, Yanagisawa T, Kurihara T, et al. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination. Breast Cancer Res Treat 2019;177(3):591–601. DOI: 10.1007/s10549-019-05330-9.
  36. Jiang X, Chen X, Chen Z, et al. High-throughput salivary metabolite profiling on an ultralow noise tip-enhanced laser desorption ionization mass spectrometry platform for non-invasive diagnosis of early lung cancer. J Proteome Res 2021;20(9):4346–4356. DOI: 10.1021/acs.jproteome.1c00310.
  37. Bel'skaya LV, Sarf EA, Shalygin SP, et al. Identification of salivary volatile organic compounds as potential markers of stomach and colorectal cancer: A pilot study. J Oral Biosci 2020;62(2):212–221. DOI: 10.1016/j.job.2020.05.002.
  38. Asai Y, Itoi T, Sugimoto M, et al. Elevated polyamines in saliva of pancreatic cancer. Cancers (Basel) 2018;10(2):43. DOI: 10.3390/cancers10020043.
  39. Kuwabara H, Katsumata K, Iwabuchi A, et al. Salivary metabolomics with machine learning for colorectal cancer detection. Cancer Sci 2022;113(9):3234–3243. DOI: 10.1111/cas.15472.
  40. Assad DX, Mascarenhas ECP, de Lima CL, et al. Salivary metabolites to detect patients with cancer: A systematic review. Int J Clin Oncol 2020;25(6):1016–1036. DOI: 10.1007/s10147-020-01660-7.
  41. Guerra ENS, Acevedo AC, Leite AF, et al. Diagnostic capability of salivary biomarkers in the assessment of head and neck cancer: A systematic review and meta-analysis. Oral oncology 2015;51(9): 805–818. DOI: 10.1016/j.oraloncology.2015.06.010.
  42. Lau C, Kim Y, Chia D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem 2013;288(37): 26888–26897. DOI: 10.1074/jbc.M113.452458.
  43. Lau CS, Wong DT. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS One 2012;7(3):e33037. DOI: 10.1371/journal.pone.0033037.
  44. Chiappin S, Antonelli G, Gatti R, et al. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clinica chimica acta 2007;383(1–2):30–40. DOI: 10.1016/j.cca.2007.04.011.
  45. Gerner EW, Meyskens FL, Jr. Polyamines and cancer: Old molecules, new understanding. Nat Rev Cancer 2004;4(10):781–792. DOI: 10.1038/nrc1454.
  46. Soda K, Kano Y, Sakuragi M, et al. Long-term oral polyamine intake increases blood polyamine concentrations. J Nutr Sci Vitaminol (Tokyo) 2009;55(4):361–366. DOI: 10.3177/jnsv.55.361.
  47. Löser C, Fölsch UR, Paprotny C, et al. Polyamine concentrations in pancreatic tissue, serum, and urine of patients with pancreatic cancer. Pancreas 1990;5(2):119–127. DOI: 10.1097/00006676-199003000-00001.
  48. Nakajima T, Katsumata K, Kuwabara H, et al. Urinary polyamine biomarker panels with machine-learning differentiated colorectal cancers, benign disease, and healthy controls. Int J Mol Sci 2018;19(3):756. DOI: 10.3390/ijms19030756.
  49. DeFelice BC, Fiehn O, Belafsky P, et al. Polyamine metabolites as biomarkers in head and neck cancer biofluids. Diagnostics (Basel) 2022;12(4):797. DOI: 10.3390/diagnostics12040797.
  50. Li Y, St John MA, Zhou X, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res 2004;10(24):8442–8450. DOI: 10.1158/1078-0432.CCR-04-1167.
  51. Kozaki T, Lee S, Nishimura T, et al. Effects of saliva collection using cotton swabs on melatonin enzyme immunoassay. J Circadian Rhythms 2011;9(1):1. DOI: 10.1186/1740-3391-9-1.
  52. Okuma N, Saita M, Hoshi N, et al. Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile. PLoS One 2017;12(8):e0183109. DOI: 10.1371/journal.pone.0183109.
  53. Kawanishi N, Hoshi N, Masahiro S, et al. Effects of inter-day and intra-day variation on salivary metabolomic profiles. Clin Chim Acta 2019;489:41–48. DOI: 10.1016/j.cca.2018.11.030.
  54. Sugimoto M, Saruta J, Matsuki C, et al. Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics 2013;9(2):454–463. DOI: https://doi.org/10.1007/s11306-012-0464-y.
  55. Ishikawa S, Sugimoto M, Kitabatake K, et al. Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids 2017;49(4):761–770. DOI: 10.1007/s00726-017-2378-5.
  56. Wang Q, Gao P, Wang X, et al. Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clin Chim Acta 2014;427:79–85. DOI: 10.1016/j.cca.2013.10.004.
  57. Nose D, Sugimoto M, Muta T, et al. Salivary polyamines help detect high-risk patients with pancreatic cancer: A prospective validation study. Int J Mol Sci 2023;24(3):2998. DOI: 10.3390/ijms24032998.
  58. Saito R, Sugimoto M, Hirayama A, et al. Quality assessment of untargeted analytical data in a large-scale metabolomic study. J Clin Med 2021;10(9):1826. DOI: 10.3390/jcm10091826.
  59. Tanaka S, Machino M, Akita S, et al. Changes in salivary amino acid composition during aging. In Vivo 2010;24(6):853–856. PMID: 21164043.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.