The development of immunotherapy has revealed a new era of opportunity for the treatment of cancer. Chimeric antigen receptor (CAR) T-cell therapy, a modality which uses the body's immune system to fight cancer, is a groundbreaking approach to treating diseases that have long resisted standard medical care. First proposed as a theoretical concept in the late 1980s, CAR-T-cell therapy has since developed into a complex therapeutic approach. It can potentially revolutionise cancer treatment by eliminating tumours using genetically modified T-cells that express artificial receptors that target tumour-specific antigens. The increasing clinical success of CAR-T-cell therapy, namely in the management of haematological malignancies like acute lymphoblastic leukaemia (ALL) and some lymphoma subtypes, has brought this modality to the forefront of translational clinical research. Despite its effectiveness, it is not without its own set of difficulties. Hence, it is imperative to thoroughly analyse the current state of engineered T-cell therapy and identify areas of enhancement. This essay seeks to explore the involuted mechanics and ways to overcome the roadblocks presented by conventional CAR-T-cell therapy, with an emphasis on the use of CAR-T-cells in solid tumours to harness their full potential. This would elucidate the potential of paradigm change in cancer treatment in the future.
Wang J, Shen F, Yao Y, et al. Adoptive cell therapy: A novel and potential immunotherapy for glioblastoma. Front Oncol 2020;10:59. DOI: 10.3389/fonc.2020.00059.
Zhao D, Zhu D, Cai F, et al. Current situation and prospect of adoptive cellular immunotherapy for malignancies. Technol Cancer Res Treat 2023;22:15330338231204198. DOI: 10.1177/15330338231204198.
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol 2020;20(11):651–668. DOI: 10.1038/s41577-020-0306-5.
Ahmed H, Mahmud AR, Siddiquee MohdFR, et al. Role of T cells in cancer immunotherapy: Opportunities and challenges. Cancer Pathog Ther 2023;1(2):116–126. DOI: 10.1016/j.cpt.2022.12.002.
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014;257(1):107–126. DOI: 10.1111/imr.12131.
Mitra A, Barua A, Huang L, et al. From bench to bedside: The history and progress of CAR T cell therapy. Front Immunol 2023;14:1188049. DOI: 10.3389/fimmu.2023.1188049.
Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 car therapy in acute lymphoblastic leukemia. N Engl J Med 2018;378(5):449–459. DOI: 10.1056/NEJMoa1709919.
Sterner RC, Sterner RM. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J 2021;11(4):69. DOI: 10.1038/s41408-021-00459-7.
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, et al. Single-chain fragment variable: Recent progress in cancer diagnosis and therapy. Cancers (Basel) 2022;14(17):4206. DOI: 10.3390/cancers14174206.
Keane JT, Posey AD. Chimeric antigen receptors expand the repertoire of antigenic macromolecules for cellular immunity. Cells 2021;10(12):3356. DOI: 10.3390/cells10123356.
Alabanza L, Pegues M, Geldres C, et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Molecular Therapy 2017;25(11):2452–2465. DOI: 10.1016/j.ymthe.2017.07.013.
Muller YD, Nguyen DP, Ferreira LMR, et al. The CD28-transmembrane domain mediates chimeric antigen receptor heterodimerization with CD28. Front Immunol 2021;12:639818. DOI: 10.3389/fimmu.2021. 639818.
Ahmad U, Khan Z, Ualiyeva D, et al. Chimeric antigen receptor T cell structure, its manufacturing, and related toxicities; A comprehensive review. Advances in Cancer Biology - Metastasis. 2022;4:100035. DOI: 10.1016/j.adcanc.2022.100035.
Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020;17(3):147–167. DOI: 10.1038/s41571-019-0297-y.
Mazinani M, Rahbarizadeh F. CAR-T cell potency: From structural elements to vector backbone components. Biomarker Research 2022;10(1):70. DOI: 10.1186/s40364-022-00417.w.
Tokarew N, Ogonek J, Endres S, et al. Teaching an old dog new tricks: Next-generation CAR T cells. Br J Cancer 2019;120(1):26–37. DOI: 10.1038/s41416-018-0325-1.
De Marco RC, Monzo HJ, Ojala PM. CAR T cell therapy: A versatile living drug. Int J Mol Sci 2023;24(7):6300. DOI: 10.3390/ijms24076300.
Liu J, Zhong JF, Zhang X, et al. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies. J Hematol Oncol 2017;10(1):35. DOI: 10.1186/s13045-017-0405-3.
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, et al. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front Immunol 2023;14:1113882. DOI: 10.3389/fimmu.2023.1113882.
Dagar G, Gupta A, Masoodi T, et al. Harnessing the potential of CAR-T cell therapy: Progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023;21(1):449. DOI: 10.1186/s12967-023-04292-3.
Chmielewski M, Hombach AA, Abken H. Antigen-specific T-cell activation independently of the MHC: Chimeric antigen receptor-redirected T cells. Front Immunol 2013;4:371. DOI: 10.3389/fimmu.2013.00371.
Benmebarek MR, Karches CH, Cadilha BL, et al. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci 2019;20(6):1283. DOI: 10.3390/ijms20061283.
Ajina A, Maher J. Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 2018;17(9):1795–1815. DOI: 10.1158/1535-7163.MCT-17-1097.
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024;123(15):2199–2210. DOI: 10.1016/j.bpj.2023.09.004.
Flugel CL, Majzner RG, Krenciute G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol 2023;20(1):49–62. DOI: 10.1038/s41571-022-00704-3.
Hong LK, Chen Y, Smith CC, et al. CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30+ and CD30– Embryonal Carcinoma via Antigen-Dependent and Fas/FasL Interactions. Cancer Immunol Res 2018;6(10):1274–1287. DOI: 10.1158/2326-6066.CIR-18-0065.
Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell Therapy. Cancer Discov 2018;8(10):1219–1226. DOI: 10.1158/2159-8290.CD-18-0442.
Messmer AS, Que YA, Schankin C, et al. CAR T-cell therapy and critical care. Wien Klin Wochenschr 2021;133(23–24):1318–1325. DOI: 10.1007/s00508-021-01948-2.
Martinez M, Moon EK. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 2019;10:128. DOI: 10.3389/fimmu.2019.00128.
Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010;18(4):843–851. DOI: 10.1038/mt.2010.24
Wei J, Han X, Bo J, et al. Target selection for CAR-T therapy. J Hematol Oncol 2019;12(1):62. DOI: 10.1186/s13045-019-0758-x
Kankeu Fonkoua LA, Sirpilla O, Sakemura R, et al. CAR T cell therapy and the tumor microenvironment: Current challenges and Opportunities. Mol Ther Oncolytics 2022;25:69–77. DOI: 10.1016/j.omto.2022.03.009.
Maalej KM, Merhi M, Inchakalody VP, et al. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Mol Cancer 2023;22(1):20. DOI: 10.1186/s12943-023-01723-z.
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Addressing the obstacles of CAR T cell migration in solid tumors: Wishing a heavy traffic. Crit Rev Biotechnol 2022;42(7):1079–1098. DOI: 10.1080/07388551.2021.1988509.
Hou AJ, Chen LC, Chen YY. Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov 2021;20(7):531–550. DOI: 10.1038/s41573-021-00189-2.
Rojas-Quintero J, Díaz MP, Palmar J, et al. Car T cells in solid tumors: Overcoming obstacles. Int J Mol Sci 2024;25(8):4170. DOI: 10.3390/ijms25084170.
Marofi F, Achmad H, Bokov D. et al. Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Res Ther 13, 140 (2022). DOI: 10.1186/s13287-022-02819-x.
Wang JY, Wang L. CAR-T cell therapy: Where are we now, and where are we heading? Blood Science 2023;5(4):237–248. DOI: 10.1097/BS9.0000000000000173.
Xie B, Li Z, Zhou J, et al. Current status and perspectives of dual-targeting chimeric antigen receptor T-cell therapy for the treatment of hematological malignancies. Cancers (Basel) 2022;14(13):3230. DOI: 10.3390/cancers14133230.
Guzman G, Reed MR, Bielamowicz K, et al. CAR-T Therapies in Solid Tumors: Opportunities and Challenges. Current Oncology Reports [Internet]. 2023;25(5):479–489. Available from: https://pubmed.ncbi.nlm.nih.gov/36853475/.
Zhou R, Yazdanifar M, Roy L Das, et al. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 2019;10:1149. DOI: 10.3389/fimmu.2019.01149.
Liu L, Qu Y, Cheng L, et al. Engineering chimeric antigen receptor T cells for solid tumour therapy. Clin Transl Med 2022;12(12):e1141. DOI: 10.1002/ctm2.1141.
Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 2015;21(5):524–529. DOI: 10.1038/nm.3833.
Kloss CC, Lee J, Zhang A, et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Molecular Therapy 2018;26(7):1855–1866. DOI: 10.1016/j.ymthe.2018.05.003.